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Back to basics: historical option pricing revisited

By Jean-Philippe Bouchaud1,2 and Marc Potters2

1Service de Physique de l’État Condensé, Centre d’études de Saclay,
Orme des Merisiers, 91191 Gif-sur-Yvette Cedex, France

2Science & Finance, 109–111 rue Victor Hugo, 92523 Levallois Cedex, France

We reconsider the problem of option pricing using historical probability distributions.
We first discuss how the risk-minimization scheme proposed recently is an adequate
starting point under the realistic assumption that price increments are uncorrelated
(but not necessarily independent) and of arbitrary probability density. We discuss
in particular how, in the Gaussian limit, the Black–Scholes results are recovered,
including the fact that the average return of the underlying stock disappears from
the price (and the hedging strategy). We compare this theory to real option prices
and find these reflect in a surprisingly accurate way the subtle statistical features of
the underlying asset fluctuations.

Keywords: options; incomplete markets; volatility smile; implied kurtosis

1. Introduction

The famous Black–Scholes option pricing theory has two remarkable features: the
hedging strategy eliminates risk entirely, and the option price does not depend at
all on the average return of the underlying asset (Black & Scholes 1973; Hull 1997;
Wilmott et al . 1993). The second property means that the option price is not simply
the actualized average of the future pay-off over the historical probability distri-
bution, which obviously would depend on the average return. This is even more
striking in the case of the Cox–Ross–Rubinstein binomial model (Hull 1997; Cox et
al . 1979) where the pricing measure is completely unrelated to the actual distribution
of returns. This has lead to a rather abstract and general framework for derivative
pricing, where the absence of arbitrage opportunities leads, for models where risk
can be eliminated completely, to the existence of a ‘risk-neutral probability measure’
(unrelated to the historical one) over which the relevant average should be taken to
obtain the price of derivatives (Harrison & Pliska 1981; Baxter & Rennie 1997). It is
thus a rather common belief that the knowledge of the ‘true’ probability distribution
of returns is a useless piece of information in order to price options. The credence is
rather that the relevant ‘implied’ value of the parameters should be obtained from
the option markets themselves, and used to price other instruments (for example,
exotic options) (see, for example, Hull 1997; Dupire 1997).

However, in most models of stock fluctuations, except for very special cases (con-
tinuous-time Brownian motion and binomial, both being very poor representations of
the reality), risk in option trading cannot be eliminated, and strict arbitrage oppor-
tunities do not exist, whatever the price of the option. That risk cannot be eliminated
is furthermore the fundamental reason for the very existence of option markets. It
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would thus be more satisfactory to have a theory of options where the true historical
behaviour of the underlying asset was used to compute the option price, the hedging
strategy, and the residual risk. The latter is clearly important to estimate, both for
risk control purposes and also because it is reasonable to think that this residual
risk partly determines the bid–ask spread imposed by market makers. The natural
framework for this is the risk minimization approach developed by several authors
(Schweizer 1994, 1999; Schäl 1994; Bouchaud & Sornette 1994; Bouchaud & Potters
1997; Aurell & Simdyankin 1998; Aurell & Życzkowski 1996; Wolczyńska 1998; Ham-
marlid 1998; Matacz 1998), where the optimal trading strategy is determined such
that the chosen measure of risk (for example, the variance of the wealth balance)
is minimized. The ‘theoretical’ price is then obtained using a fair-game argument.
Note that in this approach the option price is not unique since it depends on the
definition of risk; furthermore, a risk-premium correction to the fair-game price can
be expected in general. From a theoretical point of view, this would generally be
regarded as a lethal inconsistency. From a practical point of view, however, we see
this as an advantage: since the price ambiguity is a constitutive property of option
markets, it is interesting to understand the origin and size of this ambiguity. In this
framework, the historical probability distribution determines the ‘pricing kernel’ to
be used in the option price formula. We show in detail how, in the Black–Scholes
limit, the average trend indeed completely disappears from the formula, and all the
classical results are recovered. For more general models, however, the independence
of the price on the average return is non-trivial.

The outline of this paper is as follows. We first recall the basic steps leading
to option prices and optimal hedges for a general process with uncorrelated (but
not necessarily independent) increments, which we present in terms of a cumulant
expansion to show how the Black–Scholes results are obtained in the corresponding
Gaussian limit. The first cumulant correction provides a theory for the volatility smile
in terms of the (maturity dependent) kurtosis of the terminal price distribution. We
compare this theory to real option prices (on a liquid market) and find that these
option prices reflect in a surprisingly accurate way the subtle statistical features
of the underlying asset fluctuations (Granger & Ding 1994; Guillaume et al . 1997;
Cont et al . 1997; Bouchaud 1998), in particular the persistent nature of the volatility
fluctuations.

2. A risk minimization theory of option pricing

(a) The global wealth balance

Let us first write the wealth balance equation corresponding to the writing of a
European call option. At time t = 0, the writer receives the price of the option
C[x0, xs, T ], on a certain asset whose value is x(t = 0) = x0. The strike price is xs.
Between t = 0 and t = T , the writer trades the underlying asset at discrete times
t = kτ , k = 1, . . . , N = T/τ ; his strategy is to hold φk(xk) assets if the price is
x(t) = xk when the time is t = kτ . It is easy to show that the change of wealth due
to this trading is given by (Bouchaud & Potters 1997):

∆Wtrading =
N−1∑
k=0

φk(xk)[xk+1 − erτxk]er(T−tk−τ), (2.1)
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where r is the risk-free rate and tk = kτ . At time T = Nτ , the writer loses the
difference xN −xs if the option is exercised. Thus the complete wealth balance reads

∆W = C[x0, xs, T ]erT −max(xN − xs, 0) +
N−1∑
k=0

φk(xk)δxker(T−tk+1), (2.2)

where we have introduced the notation δxk ≡ [xk+1 − erτxk]. Note that δxk is
posterior to the instant k where φk is determined. Denoting as 〈· · ·〉 the average over
the historical distribution, the average profit is given by

〈∆W 〉 = C[x0, xs, T ]erT − 〈max(xN − xs, 0)〉+
N−1∑
k=0

〈φk(xk)〉〈δxk〉er(T−tk+1). (2.3)

The fair-game requirement then fixes C[x0, xs, T ] such that 〈∆W 〉 = 0.
Although other interesting definitions could be considered (Bouchaud & Potters

1997), we restrict ourselves here to the case where the risk is measured as

R ≡ 〈∆W 2〉 − 〈∆W 〉2 = 〈∆W 2〉. (2.4)

The risk R is always greater than or equal to zero and the minimum is obtained for
a certain optimal strategy φ∗, determined by a functional derivation of (2.4) with
respect to φ(x, t). This determines the option price through

C[x0, xs, T ] = e−rT 〈max(xN − xs, 0)〉 −
N−1∑
k=0

〈φ∗k(xk)〉〈δxk〉e−rtk+1 . (2.5)

Note that since φ∗ depends a priori on our choice of the variance as the relevant
measure of risk, the price of the option is not unique, but reflects (among other
things) the operator’s perception of risk.

(b) The case of zero-excess average return

In this section we consider the case where the average return of the stock over the
bond, m = 〈δxk〉, is zero. This simplifying hypothesis is often justified in practice for
small maturities, where average return effects are small compared with volatilities,
and can be treated perturbatively, as shown in § 2 c.

Let P (x, T | x0, 0) dx be the probability that the asset value is x at time T , knowing
that it was x0 at time 0. When m = 0, equation (2.5) then yields an option price
independent of the trading strategy:

C[x0, xs, T ;m = 0] = e−rT 〈max(xN − xs, 0)〉 ≡ e−rT
∫ ∞
xs

dx (x− xs)P (x, T | x0, 0).

(2.6)

Note that our assumption that m = 0 means that the average of P (x, T | x0, 0) is
not at x0, but at the forward price x0erT .

In order to proceed with the risk minimization, we shall assume that the price
increments δxk are uncorrelated random variables, such that 〈δxkδx`〉 = σ2δk,`,
where δk,` is the Kronecker symbol. The assumption that σ does not depend on k
is in general not justified, since it amounts to assuming that share price follows an
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additive random process of constant volatility (but with an arbitrary distribution for
the increments). Actually, real data are often better described (for short maturities)
as being an additive random process rather than a multiplicative one (Bouchaud &
Potters 1997), an assumption which does introduce an spurious positive skew in the
price distribution. In reality, however, σ depends on k, which reflects heteroskedas-
tic effects (or time-persistent volatility (Granger & Ding 1994; Guillaume 1997)).
Taking this effect into account would lead to more involved calculations, which can,
however, still be completed analytically (Bouchaud & Potters 1997). With these
approximations in mind, the relevant formula for risk is rather simple:

〈∆W 2〉 = 〈∆W 2〉0 + σ2
N−1∑
k=0

∫ ∞
0

dxP (x, tk | x0, 0)φ2
k(x)e2r(T−tk+1)

− 2er(T−tk+1)
N−1∑
k=0

∫ ∞
0

dxP (x, tk | x0, 0)φk(x)

×
∫ ∞
xs

dx′ (x′ − xs)P (x′, T | x, tk)〈δxk〉x,tk→x′,T , (2.7)

where 〈∆W 2〉0 is the unhedged (φk ≡ 0) risk associated with the option and

〈δxk〉x,tk→x′,T
is the conditional average of δxk on the trajectories starting at x at time tk and
ending at point x′ at time T .

The optimal trading strategy is obtained by setting (Bouchaud & Sornette 1994;
Bouchaud & Potters 1997; Aurell & Simdyankin 1998; Aurell & Życzkowski 1996)

∂〈∆W 2〉
∂φk(x)

= 0 (2.8)

for all k and x. This leads to the following explicit result for the optimal hedging
strategy:

φ∗k(x) =
e−r(T−tk+1)

σ2

∫ ∞
xs

dx′ (x′ − xs)〈δxk〉x,tk→x′,TP (x′, T | x, tk). (2.9)

This formula simplifies somewhat when the increments are Gaussian, and one finally
finds the famous Black–Scholes ‘∆-hedge’:

φ∗k(x) = ∂C[x, xs, T − tk]/∂x.

In the non-Gaussian case, however, this simple relation between the derivative of the
option price and the trading strategy no longer holds (see equation (2.13) below).

Inserting (2.9) into (2.7) leads to the following formula for the residual risk:

R∗ = 〈∆W 2〉0 −Dτ
N−1∑
k=0

∫ ∞
0

dxP (x, tk | x0, 0)φ∗2k (x)e−r(T−tk+1). (2.10)

In general, the left-hand side of (2.10) is non-zero; in practice it is quite high—
for example, for typical one-month options on liquid markets,

√
R∗ represents as
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much as 25% of the option price itself (Bouchaud & Potters 1997). However, in
the special case where P (x, t | x0, 0) is normal (or lognormal), and in the limit of
continuous trading, that is, when τ → 0, one can show that the residual risk R∗
actually vanishes, thanks to a somewhat miraculous identity for Gaussian integrals
(Bouchaud & Sornette 1994). Hence, the above formalism matches smoothly with
all the Black–Scholes results in the limit of a continuous-time Brownian (or log-
Brownian) process, at least when the excess average return of the asset is zero. Let
us now discuss how these results are changed if the average return m ≡ 〈δxk〉 is
non-zero (but small).

(c) Small non-zero average return

More precisely, we shall consider the case where mN � σ
√
N (N = T/τ), or,

more intuitively, that the average return on the time-scale of the option is small
compared with the typical variations, which is certainly the case for options up to a
few months.† The global wealth balance then includes the term related to the trading
strategy, which reads‡

〈∆Wtrading〉 = m
N−1∑
k=0

∫ ∞
0

dxP (x, t = kτ | x0, 0)φ∗k(x). (2.11)

The advantage of considering a small average return is that one can do a perturbation
around the zero-average return case, and still use the explicit optimal strategy of (2.9)
to lowest order in m.

Compared to the case m = 0, the option price is changed both because P (x, k |
x0, 0) is biased, and because 〈∆Wtrading〉 must be substracted from equation (2.5).
It is convenient to use the Fourier transform of the probability distribution

P̃ (z) =
∫ ∞
−∞

dxP (x,N | x0, 0) exp(ixz)

and to expand it in a series introducing the cumulants cn. They are defined by

P̃ (z) = exp
[ ∞∑
n=1

cn(iz)n

n!

]
, (2.12)

where c1 = mN , c2 = Nσ2, κ = c4/c
2
2 is the kurtosis, etc. Applying the cumulant

expansion to the probability distribution in equation (2.9), we obtain the following
optimal strategy for m = 0 (Bouchaud & Potters 1997):

φ∗k(x) =
1
c2

∞∑
n=2

(−1)ncn
(n− 1)!

∂n−1

∂xn−1 C[x, xs, T − tk]. (2.13)

Note again that in the Gaussian case (cn = 0 for n > 2), one recovers the standard
Black–Scholes ‘∆-hedge’.

† Typically, m = 5% annual and σ = 15% annual. The order of magnitude of the error made in
neglecting the second-order term in m is m2N/σ2 ' 0.1 even for Nτ = 1 year.
‡ For the sake of simplicity, we shall set the interest r to zero in the following. See Aurell & Simdyankin

(1998) and Aurell & Życzkowski (1996) for a more complete discussion.
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Inserting the optimal strategy (2.13) into equation (2.11) and integrating by parts
one gets an expansion of the trading term 〈∆Wtrading〉. Inserted into equation (2.5),
this gives the following correction to the option price (Bouchaud & Potters 1997):

C[x0, xs, T ;m] = C[x0, xs, T ;m = 0]

− m

c2

∞∑
n=3

cn
(n− 1)!

∂n−3

∂xn−3
0

P0(x′, N |x0, 0)|x′=xs +O(m2), (2.14)

where the shorthand P0 stands for the probability distribution where the first cumu-
lant m has been set to zero.

In the Gaussian case, cn = 0 for all n > 3, and one thus sees explicitly that
Cm = C0, at least to first order in m. Actually, one can show that this is true to all
orders in m in the Gaussian case, which is an alternative way to derive the result of
Black & Scholes in a Gaussian context (Bouchaud & Potters 1997).†

However, for even distributions with fat tails (c3 = 0 and c4 > 0), it is easy to
see from equation (2.14) that a positive average return m > 0 decreases the price of
out-of-the-money options (xs > x0), and increases the price of in-the-money options
(xs < x0). Hence, we again see explicitly that the independence of the option price
on the average return m, which is one of the most important results of Black &
Scholes, does not survive for more general models of stock fluctuations.

Note finally that equation (2.14) can also be written as

C[x0, xs, T ;m] =
∫ ∞
xs

dx (x− xs)Q(x, T | x0, 0) (2.15)

with an effective distribution Q defined as

Q(x, T | x0, 0) = P0(x, T | x0, 0)− m

c2

∞∑
n=3

cn
(n− 1)!

∂n−1

∂xn−1
0

P0(x,N | x0, 0). (2.16)

The integral over x of Q is one, but Q is not a priori positive everywhere. This
means that for a certain family of payoffs, the fair price of the option (2.15) may be
negative in the absence of risk premium. From a practical point of view, however,
this requires rather absurd values for the average return and for the strike price,
which in turn would lead to a large residual risk.

The pseudo-distribution Q generalizes the ‘risk neutral probability’ usually dis-
cussed in the context of the Black–Scholes theory, and also has the property that
the excess average return (the integral of (x − x0)Q over x) is zero, as can easily
be seen by inspection from (2.16). In fact, one can derive a general formula for Q
without any restriction on m of r (Aurell & Simdyankin 1998; Aurell & Życzkowski
1996; Wolczyńska 1998; Hammarlid 1998), and the effective distribution still has the
properties that it is normalized to one and has zero-average excess return.

3. Volatility smile and implied kurtosis

In the case where the market fluctuations are moderately non-Gaussian, as is the case
for liquid markets, one might expect that the first terms in the cumulant expansion

† This result is obvious in the framework of Ito’s calculus, which is only valid for all Gaussian processes
(including the lognormal) in the continuum time limit.
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Figure 1. Comparison between the historical volatility of the BUND (measured from high-
frequency data and filtered over the past five days), and the implied volatility, extracted from
the option prices through formula (3.1).

around the Black–Scholes formula are sufficient to account for real option prices. If
one only retains the leading-order correction which is (for symmetric fluctuations)
proportional to the kurtosis κ, one finds that the price of options C(x0, xs, T ) can
be written as a Gaussian Black–Scholes formula,† but with a modified value of the
volatility σ, which becomes price and maturity dependent (Potters et al . 1998):

σimp(xs, T ) = σ

[
1 + 1

24κT

(
(xs − x0)2

σ2T
− 1
)]
. (3.1)

The volatility σimp is called the implied volatility by the market operators, who use
the standard Black–Scholes formula to price options, but with a value of the volatility
which they estimate intuitively, and which turns out to depend on the exercise price
in a roughly parabolic manner, as indeed suggested by equation (3.1). This is the
famous ‘volatility smile’. Equation (3.1) furthermore shows that the curvature of the
smile is directly related to the kurtosis κT of the underlying statistical process on the

† Note that the operators use the rather more standard lognormal Black–Scholes formula, which, as
noted above, induces a spurious positive skew not present in real data (at least for short maturities). In
order to correct for this skew, the lognormal volatility smile is then negatively skewed. A more symmetric
smile is observed if one talks in terms of a Gaussian volatility, which is what we adopt in the following.
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Figure 2. Plot (in log–log coordinates) of the average implied kurtosis κimp (determined by
fitting the implied volatility for a fixed maturity by a parabola) and of the empirical kurtosis
κN (determined directly from the historical movements of the BUND contract), as a function of
the reduced time-scale N = T/τ , τ = 30 min. All transactions of options on the BUND future
from 1993 to 1995 were analysed along with 5 min tick data of the BUND future for the same
period. We show for comparison a fit with κN ' N−0.6 (dark line). A fit with an exponentially
decaying volatility correlation function is, however, also acceptable (dotted line).

scale of the maturity T = Nτ . We have tested this prediction by directly comparing
the ‘implied kurtosis’,† obtained by extracting from real option prices the volatility
σ and the curvature of the implied volatility smile, with the historical value of the
volatility and of the kurtosis κN . We have mostly studied short-maturities (up to
two months) options on futures, for which the interest rate can be set to zero. We
also restrict ourselves to liquid markets (such as the BUND option market) where:
(i) non-Gaussian effects are not too strong; and (ii) risk premiums are expected to
be small, and thus where a comparison with the fair price is meaningful.

We have found the following results. The implied volatility turns out to be highly
correlated with a short time filter of the historical volatility (see figure 1). Figure 2
shows the comparison between the implied kurtosis and historical kurtosis, with no
further ajustable parameters. Note that the historical kurtosis decays more slowly
than N−1, which would be expected for a process with independent identically dis-
tributed increments. This anomalously slow decay is directly related to volatility
persistence effects (Potters et al . 1998; Bouchaud & Potters 1997).

† The idea of an implied kurtosis is also discussed in Jarrow & Rudd (1982) and Corrado & Su (1996).
These authors, however, considered an expansion around the lognormal distribution rather than around
a Gaussian distribution, as discussed here (see also the previous footnote).

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Back to basics: historical option pricing revisited 2027

It is interesting to note that the kurtosis correction to the optimal strategy does
not coincide with the market practice of using the implied volatility in the Black–
Scholes ∆-hedge. However, since the risk is minimum for φ = φ∗, this means that
the increase of risk due to a small error δφ in the strategy is only of order δφ2, and
thus often quite small in practical applications.

The remarkable agreement between the implied and historical value of the param-
eters (which we have also found on a variety of other assets), and the fact that they
evolve similarly with maturity, shows that the market as a whole is able to correct
(by trial and error) the inadequacies of the Black–Scholes formula, and to encode in
a satisfactory way both the fact that the distribution has a positive kurtosis, and
that this kurtosis decays with maturity in an anomalous fashion due to volatility
persistence effects.

4. Conclusion

In our opinion, mathematical finance in the past decades has overfocused on the con-
cept of arbitrage-free pricing, which relies on very specific models (or instruments)
where risk can be eliminated completely. This leads to a remarkably elegant and con-
sistent formalism, where derivative pricing amounts to determining the risk-neutral
probability measure, which in general does not coincide with the historical measure.
In doing so, however, many important and subtle features are swept under the rug,
in particular the amplitude of the residual risk. Furthermore, the fact that the risk-
neutral and historical probabilities need not be the same is often an excuse for not
worrying when the parameters of a specific model deduced from derivative markets
are very different from historical parameters. This is particularly obvious in the case
of interest rates (Bouchaud et al . 1997, 1998). In our mind, this rather reflects that
an important effect has been left out of the models, which in the case of interest
rates is a risk premium effect (Bouchaud et al . 1997, 1998). We believe that a more
versatile (although less elegant from a mathematical point of view) theory of deriva-
tive pricing, such as the one discussed above, allows one to use, in a consistent and
fruitful way, the empirical data on the underlying asset to price, hedge and control
the risk of the corresponding derivative security. Extension of these ideas to interest
rate derivatives is underway.

We thank J.-P. Aguilar, E. Aurell, P. Cizeau, R. Cont, L. Laloux and J. Miller for many impor-
tant discussions. We also thank P. Wilmott for giving us the opportunity to write this paper.
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